Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 369: 134-41, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16412588

RESUMO

PANcreatic DERived factor is an islet-specific cytokine that promotes apoptosis in primary islets and islet cell lines. To elucidate the genetic mechanisms of PANDER-induced cell death we performed expression profiling using the mouse PancChip version 5.0 in conjunction with Ingenuity Pathway Analysis. Murine islets were treated with PANDER and differentially expressed genes were identified at 48 and 72 h post-treatment. 64 genes were differentially expressed in response to PANDER treatment. 22 genes are associated with cell death. In addition, the genes with the highest fold change were linked with cell death or apoptosis. The most significantly affected gene at 48 h was the downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A or p21). Approximately half of the genes impacted at 72 h were linked to cell death. Cell death differentially expressed genes were confirmed by quantitative RT-PCR. Further analysis identified cell death genetic networks at both time points with 21 of the 22 cell death genes related in various biological pathways. Caspase-3 (CASP3) was biologically linked to CDKN1A in several genetic networks and these two genes were further examined. Elevated cleaved CASP3 levels in PANDER-treated beta-TC3 insulinoma cells were found to abrogate CDKN1A expression. Levels of CDKN1A were not affected in the absence of cleaved CASP3. PANDER-induced downregulation of CDKN1A expression coupled with induced CASP3-activation may serve a central role in islet cell death and offers further insight into the mechanisms of cytokine-induced beta-cell apoptosis.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocinas/fisiologia , Ilhotas Pancreáticas/metabolismo , Animais , Western Blotting , Caspase 3 , Linhagem Celular Tumoral , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Diabetes ; 54(11): 3217-28, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16249448

RESUMO

Pancreatic-derived factor (PANDER) is an islet-specific cytokine present in both pancreatic alpha- and beta-cells, which, in vitro, induces beta-cell apoptosis of primary islet and cell lines. In this study, we investigated whether PANDER is secreted by pancreatic alpha- and beta-cells and whether PANDER secretion is regulated by glucose and other insulin secretagogues. In mouse-derived insulin-secreting beta-TC3 cells, PANDER secretion in the presence of stimulatory concentrations of glucose was 2.8 +/- 0.4-fold higher (P < 0.05) than without glucose. Insulin secretion was similarly increased by glucose in the same cells. The total concentration of secreted PANDER in the medium was approximately 6-10 ng/ml (0.3-0.5 nmol/l) after a 24-h culture with glucose. L-Glucose failed to stimulate PANDER secretion in beta-TC3 cells. KCl stimulated PANDER secretion 2.1 +/- 0.1-fold compared with control without glucose. An L-type Ca2+ channel inhibitor, nifedipine, completely blocked both glucose- or KCl-induced insulin and PANDER secretion. In rat-derived INS-1 cells, glucose (20 mmol/l) stimulated PANDER secretion 4.4 +/- 0.9-fold, while leucine plus glutamine stimulated 4.4 +/- 0.7-fold compared with control without glucose. In mouse islets overexpressing PANDER, glucose (20 mmol/l) stimulated PANDER secretion 3.2 +/- 0.5-fold (P < 0.05) compared with basal (3 mmol/l glucose). PANDER was also secreted by alpha-TC3 cells but was not stimulated by glucose. Mutations of cysteine 229 or of cysteines 91 and 229 to serine, which may form one disulfide bond, and truncation of the COOH-terminus or NH2-terminus of PANDER all resulted in failure of PANDER secretion, even though these mutant or truncated PANDERs were highly expressed within the cells. In conclusion, we found that 1) PANDER is secreted from both pancreatic alpha- and beta-cells, 2) glucose stimulates PANDER secretion dose dependently in beta-cell lines and primary islets but not in alpha-cells, 3) PANDER is likely cosecreted with insulin via the same regulatory mechanisms, and 4) structure and conformation is vital for PANDER secretion.


Assuntos
Citocinas/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Citocinas/química , Citocinas/genética , Relação Dose-Resposta a Droga , Glucose/antagonistas & inibidores , Glutamina/farmacologia , Leucina/farmacologia , Camundongos , Mutação , Nifedipino/farmacologia , Cloreto de Potássio/antagonistas & inibidores , Cloreto de Potássio/farmacologia , Fatores de Tempo
3.
Biochim Biophys Acta ; 1730(3): 215-25, 2005 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-16102856

RESUMO

Pancreatic derived factor (PANDER) is a recently identified cytokine-like protein that is dominantly expressed in the islets of Langerhans of the pancreas. To investigate the mechanism of tissue-specific regulation of PANDER, we identified and characterized the promoter region. The transcriptional start site was identified 520 bp upstream of the translational start codon by 5'-RLM-RACE. Computer algorithms identified several islet-associated and glucose-responsive binding motifs that included A and E boxes, hepatocyte nuclear factors 1 and 4, Oct-1, and signal transducer and activator of transcription 3, and 5. Reporter gene analysis revealed cell type-specific PANDER promoter expression in islet and liver-derived cell lines. Levels of PANDER mRNA were directly concordant to the observed cell type-specific PANDER promoter gene expression. The minimal element was mapped to the 5'-UTR and located between +200 and +491 relative to the transcriptional start site and imparted maximal gene expression. In addition, several putative glucose-responsive binding sites were further functionally characterized to reveal critical regulatory elements of PANDER. The PANDER promoter was demonstrated to be glucose-responsive in a dose-dependent manner in murine insulinoma beta-TC3 cells and primary murine islets, but unresponsive in glucagon-secreting alpha-TC3 cells. Our findings revealed that the 5'-UTR of PANDER contains the minimal element for gene expression and imparts both tissue-specificity and glucose-responsiveness. The regulation of PANDER gene expression mimics that of insulin and suggests a potential biological function of PANDER involved in metabolic homeostasis.


Assuntos
Citocinas/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/química , Regiões Promotoras Genéticas , Regiões 5' não Traduzidas , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular Tumoral , Sequência Consenso , Citocinas/genética , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Insulinoma , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/citologia , Luciferases/análise , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Células NIH 3T3 , Pâncreas/citologia , Neoplasias Pancreáticas , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
4.
Biochemistry ; 44(34): 11342-52, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16114871

RESUMO

PANDER (pancreatic derived factor, FAM3B) is a novel cytokine, present in insulin secretory granules, that induces apoptosis of alpha and beta cells of mouse, rat, and human islets in a dose- and time-dependent manner, and may be implicated in diabetes. PANDER has the predicted secondary structure of 4 alpha-helical bundles with an up-up-down-down topology, and two disulfide bonds. Eleven mutated PANDERs were constructed and expressed in beta-TC3 cells to identify the essential region of PANDER involved in beta-cell death. Beta-cell function was assessed by assays of cell viability and insulin secretion. Based on quantitative real-time RT-PCR all mutant PANDERs had similar mRNA expression levels in beta-TC3 cells. Immunoblotting showed that ten of eleven mutant PANDER proteins were synthesized and detected in beta-TC3 cells. A mutant PANDER with no signal peptide, however, was not expressed. Truncation of helix D alone caused a 40-50% decrease in PANDER's activity, while truncation of both helices C and D resulted in a 75% loss of activity. In contrast, truncation of the N-terminus of PANDER (helix A, the loop between helices A and B, and the first two cysteines) had no effect on PANDER-induced beta-cell death. The third and fourth cysteines of PANDER, C91 and C229, were shown to form one disulfide bond and be functionally important. Finally, the region between Cys91 and Phe152 constitutes the active part of PANDER, based on the demonstration that mutants with truncation of helix B or C caused decreased beta-cell death and did not inhibit insulin secretion, as compared to wild-type PANDER. Hence, helices B and C and the second disulfide bond of PANDER are essential for PANDER-induced beta-cell death.


Assuntos
Citocinas/química , Citocinas/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Apoptose , Morte Celular , Sobrevivência Celular , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Plasmídeos , Conformação Proteica , RNA Mensageiro/genética , Ratos , Proteínas Recombinantes/farmacologia , Transfecção
5.
Diabetes ; 52(9): 2296-303, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12941769

RESUMO

PANDER (PANcreatic DERived factor, FAM3B), a newly discovered secreted cytokine, is specifically expressed at high levels in the islets of Langerhans of the endocrine pancreas. To evaluate the role of PANDER in beta-cell function, we investigated the effects of PANDER on rat, mouse, and human pancreatic islets; the beta-TC3 cell line; and the alpha-TC cell line. PANDER protein was present in alpha- and beta-cells of pancreatic islets, insulin-secreting beta-TC3 cells, and glucagon-secreting alpha-TC cells. PANDER induced islet cell death in rat and human islets. Culture of beta-TC3 cells with recombinant PANDER had a dose-dependent inhibitory effect on cell viability. This effect was also time-dependent. PANDER caused apoptosis of beta-cells as assessed by electron microscopy, annexin V fluorescent staining, and flow-cytometric terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. PANDER did not affect cytosolic Ca(2+) levels or nitric oxide levels. However, PANDER activated caspase-3. Hence, PANDER may have a role in the process of pancreatic beta-cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Citocinas/farmacologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Animais , Anexina A5/análise , Relação Dose-Resposta a Droga , Humanos , Marcação In Situ das Extremidades Cortadas , Insulina/metabolismo , Secreção de Insulina , Insulinoma , Ilhotas Pancreáticas/química , Camundongos , Neoplasias Pancreáticas , Ratos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...